will be taken in, the promoters of these events usually claim that the firearms turned in will not be investigated and no background check will be run on them. Herein lies one huge problem with these types of events. The “no questions asked” policy gives criminals the opportunity to turn in firearms either used in crimes (like homicides) or stolen from lawful owners. Not only can criminals get rid of the evidence of a crime, but they get paid for it. The lawful firearm owner who had his or her firearm stolen will never see that firearm again.

For legitimate firearm owners who turn in their firearms, these gun buybacks provide a different concern. For instance, in some cases the money the gun buyback agency is offering for the firearm is less than the firearm is worth. Gun buybacks treat junk guns and valuable antiques equally. People often do not know the true value of their firearms, and there are often more cost-effective ways of lawfully disposing of your firearms if you no longer want or need them. For example, firearm dealers and certain nonprofit organizations may be willing to accept your firearm (and potentially provide you more money for the firearm than the buyback will). I strongly suggest contacting a local gun shop to see if they are interested in buying the firearm or offering your firearm to a nonprofit for a potential tax write-off before giving a firearm to a gun buyback.

VIII. BUILDING YOUR OWN FIREARM

Another way to obtain a firearm is by making one or assembling one from parts. This practice can be lawful under both California and federal law. Federal law prohibits “manufacturing” firearms without a license but only considers those who are “engaged in the business” of making firearms (i.e., those who devote time, attention, and labor to doing so as a regular course of business) to be “manufacturers” who need a license.229 This means that making a firearm for personal use does not require a license under federal or California law as long as you do not build an item that is prohibited to possess or make under California law.

Generally four different processes exist for building a personal firearm, and each has distinct legal implications, as outlined below.

---

229 18 U.S.C. §§ 921(a)(10), (21); 923(a)(1).
A. Creating a Firearm From a Prefabricated Frame or Receiver

First, you can purchase a finished “frame” or “receiver” and then assemble it with additional parts to complete the firearm. Laws generally do not prohibit acquiring firearm parts, but because federal law considers a “frame” or a “receiver” to be a “firearm,” as does California law governing firearm acquisition, you have to get the frame or receiver through an FFL just like any other firearm (discussed in Section VI) or meet one of the exceptions. As mentioned above, you also must be at least age 21 to purchase a receiver.

B. Creating a Firearm From an 80% Receiver

The second way is to machine a firearm either from completely raw materials or partially finished materials. Making a firearm from partially finished materials is more popular as it takes less skill. Generally, you start with an incomplete receiver commonly referred to as an “80% receiver” or “80% side plate.”

The “80%” denotes how close the receiver is to being a complete firearm – though this is more of an estimate since it is impossible to say what percentage of work remains for a given firearm, which can vary based on experience, available tools, etc. An “80% receiver” is not considered a “firearm” under either federal or state law for the purposes of transfers. You must machine the remaining “20%” to complete the receiver, at which point it is considered a “firearm.” Thereafter, you can either purchase the remaining parts (e.g., barrel, stock, etc.) or machine them from raw materials and then attach them to the receiver.

The firearm you build cannot be an item that is generally unlawful to possess or manufacture under either California or federal law (see Chapters 8 and 9).

Excepting licensed manufacturers with government permission and those fixing lawfully acquired firearms, federal law prohibits assem-

---


232 Though there are other prohibited items, the main concern is to avoid inadvertently building an “assault weapon” (Chapter 8) or a “zip gun” (Chapter 9). The receiver must also be unable to accept fire-control components designed to allow full automatic fire, which would make it a “machinegun” (see Chapter 9).

233 27 C.F.R. § 478.39(b).
bling a semiautomatic rifle or any shotgun using more than ten “imported parts”234 if the assembled firearm is prohibited from being imported235 as not “particularly suitable for or readily adaptable to sporting purposes.”236

Lastly, unless you make a “firearm” as defined under the National Firearms Act (NFA) (see Chapter 9), requiring a tax payment and ATF approval,237 there is generally no California or federal requirement that you register a firearm assembled for personal use. Although not legally required, it is a good idea to at least identify the firearm with a serial number in case it is ever lost or stolen.

C. “Build Parties”

A number of firearm enthusiasts are participating in activities called “build parties.” There are two different types of activities associated with this term.

The first are get-togethers organized around finishing an 80% firearm frame or receiver. Usually the machines needed for these jobs (typically a drill press or manual mill) are expensive and not something found in every garage. Consequently, groups of firearm enthusiasts form “build parties” where they convene at the machine owner’s home and finish their 80% receivers together, usually under the oversight of someone experienced in finishing the receiver. Provided nothing created is illegal to own and no money changes hands, there should be nothing troubling about this practice under state or federal law.

“Build party” is also used to describe a type of activity that is more problematic. This activity usually involves a situation where either money exchanges hands for assistance with completing the 80% receiver, machinery is rented, and/or a computer numerical control machine (CNC machine) is used. A CNC machine is an automatic machine that will perform milling based on instructions from a programmable code. Once programed, the machine can perform its program over and over again (for example, finishing 80% receivers). Some companies and organizations have offered to sell 80% receivers and an opportunity to finish the purchased 80% receiver on their machines. Other businesses are offering an opportunity for people to use their CNC machine for the purpose of finishing 80% receivers.

234 27 C.F.R. § 478.39(a). “Imported parts” are: (1) frames, receivers, receiver castings, forgings, or castings; (2) barrels; (3) barrel extensions; (4) mounting blocks (trunions); (5) muzzle attachments; (6) bolts; (7) bolt carriers; (8) operating rods; (9) gas pistons; (10) trigger housings; (11) triggers; (12) hammers; (13) sears; (14) disconnectors; (15) buttstocks; (16) pistol grips; (17) forearms, handguards; (18) magazine bodies; (19) followers; (20) floor plates. 27 C.F.R. § 478.39(c).


These practices are problematic, and businesses/individuals engaging in these practices are routinely warned by the ATF that they may be considered engaged in the business of manufacturing firearms under federal law.238 Engaging in the business of manufacturing requires a license, bookkeeping, special engraving, and all of the other requirements associated with manufacturing and transferring firearms.

D. 3D Printing

In May 2013, there was a lot of press about 3D-printed handguns. In August 2013, there were reports of a 3D-printed .22 caliber rifle, and in November 2013 a company created a 3D-printed 1911 handgun.239 While the process of making a firearm for personal use is generally lawful, 3D-printed firearms do have some additional concerns.

There are many processes that can be classified as “3D printing.” The general concept is usually the same. An object or device is either designed or scanned in three dimensions, and the data is fed into a computer. The data from the computer is then sent to the 3D printer. Similar to how a computer tells a conventional printer to print out a document, the computer tells the 3D printer how to construct the three-dimensional object.

The 3D printer adds layer upon layer of the material to create the object. The material used depends on the machine and process. Currently, there is no process to create a single object that has moving parts, but existing technology allows the printer to create all of the individual parts of an object comprised of moving parts. While the process cannot make a whole firearm, it can make each of the parts for a firearm, which can then be assembled. Most 3D printers use some form of plastic or polymer, though there are more expensive 3D printers that work with metal, such as the one used to create a metal 1911 handgun. To make a firearm, the material must be strong enough to stand up to the stress of being fired. If made solely from plastic or polymer, a “printed” firearm could theoretically be undetectable to airport metal detectors.
